Tailoring the Structure of Multilayered Hybrid Silicon Vertical Waveguide to Achieve Anomalous Dispersion
نویسندگان
چکیده
منابع مشابه
Low loss coupler to interface silicon waveguide and hybrid plasmonic waveguide
A metallic coupler is proposed to interface a silicon on insulator (SOI) waveguide with a narrow hybrid plasmonic waveguide (200× 200 nm). The device operation is investigated and optimized to attain the best tradeoff between the mode confinement and the propagation loss. Calculations reveal that a high confinement and low loss of the energy is achieved from a silicon slab waveguide into the di...
متن کاملDispersion tailoring of the quarter-wave Bragg reflection waveguide.
We present analytical formulae for the polarization dependent first- and second-order dispersion of a quarter-wave Bragg reflection waveguide (QtW-BRW). Using these formulae, we develop several qualitative properties of the QtW-BRW. In particular, we show that the birefringence of these waveguides changes sign at the QtW wavelength. Regimes of total dispersion corresponding to predominantly mat...
متن کاملA hybrid AlGaInAs-silicon evanescent waveguide photodetector.
We report a waveguide photodetector utilizing a hybrid waveguide structure consisting of AlGaInAs quantum wells bonded to a silicon waveguide. The light in the hybrid waveguide is absorbed by the AlGaInAs quantum wells under reverse bias. The photodetector has a fiber coupled responsivity of 0.31 A/W with an internal quantum efficiency of 90 % over the 1.5 mum wavelength range. This photodetect...
متن کاملDispersion tailoring and soliton propagation in silicon waveguides.
The dispersive properties of silicon-on-insulator (SOI) waveguides are studied by using the effective-index method. Extensive calculations indicate that an SOI waveguide can be designed to have its zero-dispersion wavelength near 1.5 microm with reasonable device dimensions. Numerical simulations show that soliton-like pulse propagation is achievable in such a waveguide in the spectral region a...
متن کاملTailoring inputs to achieve maximal neuronal firing
We consider the constrained optimization of excitatory synaptic input patterns to maximize spike generation in leaky integrate-and-fire (LIF) and theta model neurons. In the case of discrete input kicks with a fixed total magnitude, optimal input timings and strengths are identified for each model using phase plane arguments. In both cases, optimal features relate to finding an input level at w...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: IEEE Photonics Journal
سال: 2017
ISSN: 1943-0655
DOI: 10.1109/jphot.2017.2692760